一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于p2023的坐标 坐标图模板的文章,本文对文章p2023的坐标 坐标图模板好好的分析和解答,希望你能喜欢,只有你喜欢的内容存在,只有你来光临,我们才能继续前行。
1.方程:
(1)一元二次方程的解:-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
(2)根与系数的关系:X1+X2=-b/a X1*X2=c/a
(3)判别式:
b2-4ac=0 注:方程有纤誉陆两个相等的虚桥实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
2.三角不等式:
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
3.乘法与因式分解:
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
4.三角函数:
(1)两角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
(2)倍角公式:
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
(3)半角公式:
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
(4)和差化积:
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
(5)正弦定理:a/sinA=b/sinB=c/sinC=2R
(6)余弦定理:b2=a2+c2-2accosB
5.数列前n项和(A~C):
A:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
B:2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
C:13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
6.圆的标准方程 :
(x-a)2+(y-b)2=r2
7.圆的一般方程:
x2+y2+Dx+Ey+F=0
8.抛物线标准方程:
y2=2px y2=-2px;x2=2py x2=-2py
9.面积公式:
(1)直棱柱侧面积:S=c*h;斜棱柱侧面积:S=c'*h
(2)正棱锥侧面积毁顷 S=1/2c*h’
(3)正棱台侧面积:S=1/2(c+c')h'
(4)圆台侧面积:S=1/2(c+c')l=pi(R+r)l
(5)圆柱侧面积:S=c*h=2pi*h
(6)圆锥侧面积:S=1/2*c*l=pi*r*l
(7)弧长公式:l=a*r;扇形面积公式 s=1/2*l*r
(8)锥体体积公式:V=1/3*S*H(圆锥体体积公式 V=1/3*pi*r2h)
(9)斜棱柱体积:V=S'L
(10)柱体体积公式:V=s*h;圆柱体:V=pi*r2h
三维笛卡儿坐标系是在二维笛卡儿坐标系的基础上根据右手定则增加第三维坐神运标(即Z轴)而形成的。
同二维坐标系一样,AutoCAD中的三维坐标系有世界坐标系WCS(World Coordinate System)和用户坐标系UCS(User Coordinate System)两种形式。
在三维游轿梁坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。
要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕放置,拇指即指向X轴的正方向。伸出食指和中指,如右图所示,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向。
要确定轴的正旋转方向,如右图所示,用右手的大拇指指向轴的正方向,弯曲手指。那么手指所指示的方向即是轴的正旋转方向。
在平面直角坐标系中,分别取与x轴、y轴方帆罩向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。
由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
PPT中图片可以使用“大小和位置”功能通过坐标调整位置。
3、在位置设置界面中输入想要设置的水平位置和垂直位置,输入完成后会自动调整位置:
以上内容是小编精心整理的关于p2023的坐标 坐标图模板的精彩内容,好的文章需要你的分享,喜欢p2023的坐标 坐标图模板这篇精彩文章的,请您经常光顾吧!
上一篇:普宁改造 普宁2023年规划
下一篇:更多运程